
Resilient Connections for

SSH and TLS

Teemu Koponen and Pasi Eronen, HIIT

Mikko Särelä, Nokia Research Center

Presented by Chakchai So-In (cs5@cse.wustl.edu)

2

Outline

� Introduction

� Related work and Goals

� Design principles

� Protocol extensions

� Implementation considerations

� Evaluation

� Conclusions

3

Motivation

� Applications have longer uptimes and experience

more disruptions.

� Laptop Suspension/Hibernation (long disconnection)

� Switching multiple network interface

� User changes location (change of IP)

Cause the termination of the connection/ application!

4

Resilient connection

� Resilient connection → Session continuity

� Continue the same session caused by Disconnection

� Implementing at higher layers desirable:

� Long disconnection periods

� No network infrastructure required and modified

� Application get upgraded

Session layer is the lowest layer to implement

resilient connection

5

What is SSH?

� SSH (Secure Shell defined in RFC 4346):
� Session protocol for secure remote login and other
secure network services

� Provides user/ server authentication and encryption and
data integrity protection

6

What is TLS?

� TLS (Transport Layer Security defined in RFC
2246):
� Provides communication session privacy (encryption,
authentication, and data integrity) over the Internet
(WWW)

� TLS and SSL are most recognized as the protocols that
provide secure HTTP (HTTPS) for Internet
transactions.

� SSL (Secure Socket Layer) was developed by Netscape
to secure transactions over WWW.

� Then IETF developed a standard protocol that provided
the same functionality. They used SSL 3.0 as the basis
for that work, which became the TLS protocol.

7

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

8

Related work

� Several session continuity on “socket API

libraries”

� E.g. Persistent connections, Mobile TCP socket,

Mobile-Socket, Reliable sockets, and Migrate

� Library placed below socket API: virtual single

unbroken connection to real TCP connections

� Key difference: Deployability

� Use of out-of-band signaling (separate TCP or UDP

session) may require changes in network

� Separate key exchange to protect the signaling messages ->

additional overhead

9

Goals

� Develop resiliency extensions for the common

TLS and SSH protocols

� Real implementation are in OpenSSH and PureTLS.

� Emphasize on deployability

� Analyze implementation issues faced when adding

the extensions to existing software packages

10

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

11

Design Principals

� No network changes required

� Incremental deployment possible

� Limited end-point changes (only SSH/TLS)

� Long disconnections supported (>10sec)

� No handover optimization

� In overall, emphasize on deployability

12

Supporting Deployability

Determine if disconnection/

connection termination

Closing message

OS independencyBuffering and explicit ACKs

No infrastructure requiredOnly application changed

Incremental deploymentExtension negotiation

Works without changes in

current middleboxes

In-band signaling

ImplicationKey Feature

13

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

14

SSH procedure (initial)

ack

ack

Server

…. TCP connection breaks!

Client

version

Payload record

Payload record

New_keys

Kex_init(kex_algorithms=

diffie-hellman-group1-sha1,..,resilient)

Kex_init(kex_algorithms=resilient)

Key exchange messages

Negotiate SSH protocol

Negotiate key_algorithm

Derive a shared secret

Turn encryption on
New_keys

Encrypted payload

version Kex = Key exchange

(Process not killed)

15

SSH procedure (reconnection)

ServerClient

New_keys

Kex_init(kex_algorithms=resilient)

Kex_init(kex_algorithms=resilient)

Negotiate SSH protocol

Negotiate key_algorithm

Turn encryption onNew_keys

Request retransmission

Flushing the buffers

version Kex = Key exchange

(connection resumed!)

Kex_reconnect_reply(MAC*)

Kex_reconnect_init(session_id, MAC*)

(retransmit records Y, Y+1, ..)

ACK (Y+M)

ACK (X+N)

(retransmit records X, X+1, ..)

Synchronize (seq=x)

Authenticate Session

Synchronize (seq=y)

*MAC = Message Authentication Code

16

SSH procedure (closing)

close

TCP connection closed

ServerClient

close

Payload record & Acks
Encrypted traffic

Explicit session close

.

.

.

.

(Server process dies)

17

TLS procedure (reconnection)

Synchronize (seq=y)

Data Retransmission

Initial hand shake

and resilient signaling

ChangeCipherSpec

(retransmit records Y, Y+1, ..)

ACK (Y+M)

Server

Protocol continues as usual

Client

Client Hello

+ Resilient (connection_id = C)

ACK (X+N)

(retransmit records X, X+1, ..)

Synchronize (seq=x)

Finished

Finished

Server Hello

+Resilient (connection_id = C)

ChangeCipherSpec

18

Security analysis

� Claim: no loss of security

� Shared keys created during the initial SSH or TLS

protocol exchange

� An attacker cannot spoof or modify the reconnect

messages.

� Replay attacks are not possible

� SSH and TLS key exchange messages include fresh

nonces that are covered by a MAC later during the

handshake.

19

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

20

Client considerations

� When to reconnect/ which interface to use?

� A manual request, automatically, or preferred network

interface becomes available

� Rely on the operating system’s source address selection

� OpenSSH: A routing socket to monitor routing table

changes

� PureTLS: Polling the OS in regular intervals for the

preferred interface

21

Server considerations

� When is a session discarded?

� Configurable server-wide timeout (based on local

policy)

� What is the server process strategy?

� Create a new process for each new client connection

� Maintain table mapping sessions for inter-process

communication

� New process passes state information to the

corresponding old process

� New process has less state to pass.

� In practice, the new process information is easier to

transfer.

22

Atomic reconnections

� The protocol state machine of an old connection

must not become corrupted if an attempt fails.

� New process transfers the state (a file descriptor /

sequence numbers) to the old process only after a

reconnection request is valid (by using keys in the

old process.

� Server: if a reconnection request is invalid, the old

process sees nothing.

� Client: either reconnection attempt succeeds or no

state is affected.

23

OpenSSH/PureTLS considerations

� OpenSSH

� Require state serialization and passing across process

boundaries

� PureTLS

� The complexity are from the requirement to keep the

objects visible to the application unchanged over

reconnections e.g. additional layer of indirection for

Socket.

24

SSH process

SSH2 daemon process

Connection 1

25

SSH process

SSH2 daemon process

Privileged process

Connection 1

26

SSH process

SSH2 daemon process

Privileged process

Connection 1

Connection 1

27

SSH process

SSH2 daemon process

Privileged process

Connection 1

28

SSH process

SSH2 daemon process

Privileged process

KEX process

Connection 1

Authentication

and Key exchange

29

SSH process

SSH2 daemon process

Privileged process

Connection 1

User process

30

SSH process

SSH2 daemon process

Privileged process

User process

Serve client

31

SSH process

SSH2 daemon process

Privileged process

User process

Connection 2

Serve client

32

SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2

Connection 2

Serve client

33

SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2

Serve client

34

SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2

Authentication

and Key exchange

Serve client

35

SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2

Validate,

Transfer states

Serve client

36

SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2 Connection 2

Validate,

Transfer states

Serve client

37

SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2 Connection 2

Serve client

38

SSH process

SSH2 daemon process

Privileged process

User process

Connection 2

Serve client

39

SSH process

SSH2 daemon process

Privileged process

User process

Serve client

40

SSH process/ reconnecting session

VERSION

KEXRECONNECT_REPLY

NEWKEYS

SYNCHRONIZE

p

s0

Packet & Acks

c0

VERSION

NEWKEYS

KEXRECONNECT_INIT

KEXINIT

KEXINIT

SYNCHRONIZE

sd

WLAN interface switched off

LAN cable plugged in

Network attachment

p
p

v
v

v

v

cn sn

Packet & Acks

TCP SYN, SYN-ACK, ACK
fork

2
3
0
 m

s
4
9
5
0
 m

s
5
0
8
0
 m

s

fork

‘c0, s0’: old client and server processes

‘cn, sn’: temporary processes

‘sd’: main daemon process

‘v’: inter-process messaging

‘p’: actual state passing

41

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

42

Scenario

� Manually switches from WLAN to wired Ethernet

� A client network interface goes down, second comes up,

client reconnects.

� Downloads a large file from a remote server

� Over SFTP (FTP over SSH)

� Over TLS (FTP over TLS)

� Metric: the actual expected length of typical

reconnections

43

OpenSSH

� 10ms RTT through WLAN an LAN, SFTP client runs on

MacOSX 10.4, SSH server runs on Linux.

� 5sec: off WLAN, 5sec: up Ethernet, 0.2sec: reconnection

Progress of an SFTP transfer before, during, and after reconnection

44

PureTLS

� 1ms RTT, the client runs on Linux, the server runs on

Windows XP

� ~5.5sec (off WLAN + up Ethernet), 0.5sec: reconnection

Progress of an TLS transfer before, during, and after reconnection

45

Overhead & complexity

� Acknowledgment overhead

� No additional IP packets: SSH/TLS ACKs fits in the

same TCP ACKs.

� OpenSSH: Send ACKs every received SSH message

� PureTLS: Send ACKs at the same time as application

data

� Implementation complexity

� Need modification at Server/Client applications

� OpenSSH 2,200 lines of extension code

� PureTLS 1,000 lines of extension code

46

Outline

� Introduction

� Related work and Goals

� Design principles

� SSH/TLS extension procedure

� Implementation considerations

� Evaluation

� Conclusions

47

Conclusion

� Extend SSH and TLS to support resilient connections

(Handle long periods of disconnected operation)

� Some principles having an effect to deployability

were identified and tested

� Deployability remains a difficult issue.

48

� Thank you! Question?

49

Issues & Questions here?

� Questions?

� ACKs Overhead:

� A single ACK is 32 bytes in total. Since the SSH

transport layer messages can be up to 32 KB: the ACK

traffic amounted to less than 0.6% of the whole

bandwidth.?

� Laptop Suspension: how can they save all states?

Maybe no need since they don’t care; just

reconnect.

� This work does not talk about how to operate the

resilient when the laptop is suspended.

50

Issues & Questions here?

� Questions?

� Also, they assume the old process is always up-

>find out how to operate when WINDOW is

suspended)

� Might be a mechanism to inform the client how

long the server will hold the connection based on

the local policy -> TLS library either to use this

function or not (resilient = no but support)

� No optimization, (At least, do analysis on

reconnection part)

