
Resilient Connections for 

SSH and TLS

Teemu Koponen and Pasi Eronen, HIIT

Mikko Särelä, Nokia Research Center

Presented by Chakchai So-In (cs5@cse.wustl.edu)



2

Outline

� Introduction

� Related work and Goals

� Design principles

� Protocol extensions

� Implementation considerations

� Evaluation

� Conclusions 



3

Motivation

� Applications have longer uptimes and experience 

more disruptions.

� Laptop Suspension/Hibernation (long disconnection)

� Switching multiple network interface

� User changes location (change of IP)

Cause the termination of the connection/ application!
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Resilient connection

� Resilient connection → Session continuity

� Continue the same session caused by Disconnection

� Implementing at higher layers desirable:

� Long disconnection periods 

� No network infrastructure required and modified

� Application get upgraded 

Session layer is the lowest layer to implement 

resilient connection
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What is SSH?

� SSH (Secure Shell defined in RFC 4346): 
� Session protocol for secure remote login and other 
secure network services

� Provides user/ server authentication and encryption and 
data integrity protection
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What is TLS?

� TLS (Transport Layer Security defined in RFC 
2246): 
� Provides communication session privacy (encryption, 
authentication, and data integrity) over the Internet 
(WWW)

� TLS and SSL are most recognized as the protocols that 
provide secure HTTP (HTTPS) for Internet 
transactions. 

� SSL (Secure Socket Layer) was developed by Netscape 
to secure transactions over WWW. 

� Then IETF developed a standard protocol that provided 
the same functionality. They used SSL 3.0 as the basis 
for that work, which became the TLS protocol.
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Related work

� Several session continuity on “socket API 

libraries”

� E.g. Persistent connections, Mobile TCP socket, 

Mobile-Socket, Reliable sockets, and Migrate

� Library placed below socket API: virtual single 

unbroken connection to real TCP connections

� Key difference: Deployability

� Use of out-of-band signaling (separate TCP or UDP 

session) may require changes in network

� Separate key exchange to protect the signaling messages -> 

additional overhead
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Goals

� Develop resiliency extensions for the common 

TLS and SSH protocols

� Real implementation are in OpenSSH and PureTLS.

� Emphasize on deployability

� Analyze implementation issues faced when adding 

the extensions to existing software packages 
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Design Principals

� No network changes required

� Incremental deployment possible

� Limited end-point changes (only SSH/TLS) 

� Long disconnections supported (>10sec)

� No handover optimization

� In overall, emphasize on deployability
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Supporting Deployability

Determine if disconnection/ 

connection termination

Closing message

OS independencyBuffering and explicit ACKs

No infrastructure requiredOnly application changed

Incremental deploymentExtension negotiation

Works without changes in 

current middleboxes

In-band signaling

ImplicationKey Feature
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SSH procedure (initial)

ack

ack

Server

…. TCP connection breaks!

Client

version

Payload record

Payload record

New_keys

Kex_init(kex_algorithms=

diffie-hellman-group1-sha1,..,resilient)

Kex_init(kex_algorithms=resilient)

Key exchange messages

Negotiate SSH protocol

Negotiate key_algorithm

Derive a shared secret

Turn encryption on
New_keys

Encrypted payload

version Kex = Key exchange

(Process not killed)
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SSH procedure (reconnection)

ServerClient

New_keys

Kex_init(kex_algorithms=resilient)

Kex_init(kex_algorithms=resilient)

Negotiate SSH protocol

Negotiate key_algorithm

Turn encryption onNew_keys

Request retransmission

Flushing the buffers

version Kex = Key exchange

(connection resumed!)

Kex_reconnect_reply(MAC*)

Kex_reconnect_init(session_id, MAC*)

(retransmit records Y, Y+1, ..)

ACK (Y+M)

ACK (X+N)

(retransmit records X, X+1, ..)

Synchronize (seq=x)

Authenticate Session

Synchronize (seq=y)

*MAC = Message Authentication Code
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SSH procedure (closing)

close

TCP connection closed

ServerClient

close

Payload record & Acks
Encrypted traffic

Explicit session close

.

.

.

.

(Server process dies)
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TLS procedure (reconnection)

Synchronize (seq=y)

Data Retransmission

Initial hand shake

and resilient signaling

ChangeCipherSpec

(retransmit records Y, Y+1, ..)

ACK (Y+M)

Server

Protocol continues as usual

Client

Client Hello 

+ Resilient (connection_id = C)

ACK (X+N)

(retransmit records X, X+1, ..)

Synchronize (seq=x)

Finished

Finished

Server Hello

+Resilient (connection_id = C)

ChangeCipherSpec
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Security analysis

� Claim: no loss of security 

� Shared keys created during the initial SSH or TLS 

protocol exchange

� An attacker cannot spoof or modify the reconnect 

messages.

� Replay attacks are not possible

� SSH and TLS key exchange messages include fresh 

nonces that are covered by a MAC later during the 

handshake.
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Client considerations

� When to reconnect/ which interface to use?

� A manual request, automatically, or preferred network 

interface becomes available

� Rely on the operating system’s source address selection 

� OpenSSH: A routing socket to monitor routing table 

changes 

� PureTLS: Polling the OS in regular intervals for the 

preferred interface
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Server considerations

� When is a session discarded?

� Configurable server-wide timeout (based on local 

policy) 

� What is the server process strategy? 

� Create a new process for each new client connection

� Maintain table mapping sessions for inter-process 

communication

� New process passes state information to the 

corresponding old process

� New process has less state to pass. 

� In practice, the new process information is easier to 

transfer.
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Atomic reconnections

� The protocol state machine of an old connection 

must not become corrupted if an attempt fails.

� New process transfers the state (a file descriptor / 

sequence numbers) to the old process only after a 

reconnection request is valid (by using keys in the 

old process.

� Server: if a reconnection request is invalid, the old 

process sees nothing. 

� Client: either reconnection attempt succeeds or no 

state is affected.
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OpenSSH/PureTLS considerations

� OpenSSH

� Require state serialization and passing across process 

boundaries

� PureTLS

� The complexity are from the requirement to keep the 

objects visible to the application unchanged over 

reconnections e.g. additional layer of indirection for 

Socket.
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SSH process

SSH2 daemon process

Connection 1
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SSH process

SSH2 daemon process

Privileged process

Connection 1
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SSH process

SSH2 daemon process

Privileged process

Connection 1

Connection 1
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SSH process

SSH2 daemon process

Privileged process

Connection 1
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SSH process

SSH2 daemon process

Privileged process

KEX process

Connection 1

Authentication 

and Key exchange
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SSH process

SSH2 daemon process

Privileged process

Connection 1

User process
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SSH process

SSH2 daemon process

Privileged process

User process

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Connection 2

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2

Connection 2

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2

Serve client
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SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2

Authentication 

and Key exchange

Serve client
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SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2

Validate,

Transfer states

Serve client
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SSH process

SSH2 daemon process

Privileged process

KEX processUser process

Privileged process

Connection 2 Connection 2

Validate,

Transfer states

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Privileged process

Connection 2 Connection 2

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Connection 2

Serve client
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SSH process

SSH2 daemon process

Privileged process

User process

Serve client
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SSH process/ reconnecting session

VERSION

KEXRECONNECT_REPLY

NEWKEYS

SYNCHRONIZE

p

s0

Packet & Acks

c0

VERSION

NEWKEYS

KEXRECONNECT_INIT

KEXINIT

KEXINIT

SYNCHRONIZE

sd

WLAN interface switched off

LAN cable plugged in

Network attachment

p
p

v
v

v

v

cn sn

Packet & Acks

TCP SYN, SYN-ACK, ACK
fork

2
3
0
 m

s
4
9
5
0
 m

s
5
0
8
0
 m

s

fork

‘c0, s0’: old client and server processes

‘cn, sn’: temporary processes

‘sd’: main daemon process

‘v’: inter-process messaging 

‘p’: actual state passing    
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Scenario

� Manually switches from WLAN to wired Ethernet 

� A client network interface goes down, second comes up, 

client reconnects.

� Downloads a large file from a remote server

� Over SFTP (FTP over SSH) 

� Over TLS (FTP over TLS)

� Metric: the actual expected length of typical 

reconnections
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OpenSSH

� 10ms RTT through WLAN an LAN, SFTP client runs on 

MacOSX 10.4, SSH server runs on Linux.

� 5sec: off WLAN, 5sec: up Ethernet, 0.2sec: reconnection

Progress of an SFTP transfer before, during, and after reconnection
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PureTLS

� 1ms RTT,  the client runs on Linux, the server runs on 

Windows XP

� ~5.5sec (off WLAN + up Ethernet), 0.5sec: reconnection

Progress of an TLS transfer before, during, and after reconnection
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Overhead & complexity

� Acknowledgment overhead

� No additional IP packets: SSH/TLS ACKs fits in the 

same TCP ACKs.

� OpenSSH: Send ACKs every received SSH message

� PureTLS: Send ACKs at the same time as application 

data

� Implementation complexity

� Need modification at Server/Client applications

� OpenSSH 2,200 lines of extension code

� PureTLS 1,000 lines of extension code
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Conclusion

� Extend SSH and TLS to support resilient connections 

(Handle long periods of disconnected operation)

� Some principles having an effect to deployability

were identified and tested

� Deployability remains a difficult issue.
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� Thank you! Question?
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Issues & Questions here?

� Questions?

� ACKs Overhead:

� A single ACK is 32 bytes in total. Since the SSH 

transport layer messages can be up to 32 KB: the ACK 

traffic amounted to less than 0.6% of the whole 

bandwidth.?

� Laptop Suspension: how can they save all states? 

Maybe no need since they don’t care; just 

reconnect.

� This work does not talk about how to operate the 

resilient when the laptop is suspended. 
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Issues & Questions here?

� Questions?

� Also, they assume the old process is always up-

>find out how to operate when WINDOW is 

suspended)

� Might be a mechanism to inform the client how 

long the server will hold the connection based on 

the local policy -> TLS library either to use this 

function or not (resilient = no but support)

� No optimization, (At least, do analysis on 

reconnection part)


